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Classical trajectory calculations on intramolecular vibrational energy redistribution (IVR) involving the torsion
in 1,1,1-trifluoroethane (TFE) are reported. Two potential energy functions (PEFs) are used to describe the
potential energy surface. The “full” PEF gives excellent agreement with the experimental vibrational
frequencies. The “simple” PEF omits nondiagonal interaction terms, but still gives very good agreement with
the experimental frequencies. The “simple” PEF is intended to minimize mode-mode coupling. Neither PEF
includes the HF elimination reaction. Calculations are carried out both with nominal microcanonical selection
of initial coordinates and momenta, and with a modified selection method that places controlled amounts of
energy in the torsion. Total (classical) vibrational energies from 0.005 to 140 kcal mol-1 are investigated.
The calculated time constants describing energy flow out of the torsional mode are<10 ps for classical
vibrational energies near the classical reaction threshold energy (∼75 kcal mol-1) and greater. It is found that
the rate of decay from the torsion largely depends on the amount of energy in the other vibrational modes.
Analysis using power spectra shows that the torsional mode in TFE is strongly coupled to the other vibrational
modes. These results strongly suggest that vibrational energy in TFE will not be sequestered in the torsion
for time periods greater than a few tens of picoseconds when the molecule has enough energy to react via HF
elimination.

I. Introduction

Recently, Kiefer et al.1 (KKSST) reported schlieren shock
tube measurements of vibrational relaxation, incubation, and
unimolecular rate constants for the HF elimination from 1,1,1-
trifluoroethane (TFE). One of the surprising results of this study
was that the pressure dependence of the unimolecular rate
constants is not accurately modeled using RRKM theory, which
is based on concepts introduced by Rice, Ramsperger, Kassel,
and Marcus.2-4 Instead of continuing to increase with pressure
as predicted by RRKM theory, the experimental rate constants
at the three highest pressures are essentially equal, as shown in
Figure 3 in KKSST and in Figure 1 in the recent publication
on this reaction from our group.5

KKSST1 and Kiefer (private communication) suggest that
their data can be explained by a non-RRKM model in which
the torsional vibrational mode is preferentially excited by
collisions following the shock. They argue that this mode
sequesters vibrational energy, which flows only very slowly to
the reaction coordinate. Thus, when TFE has energy greater
than the reaction critical energy, it reacts at a rate controlled by
slow (∼108 s-1) intramolecular vibrational energy redistribution
(IVR) between the sequestered modes and the remaining
vibrational degrees of freedom. These and other arguments made
by KKSST and Kiefer are summarized in ref 5.

In ref 5, master equation simulations of the KKSST experi-
ments and the chemical activation experiments of Marcoux and

Setser6 were reported. Several master equation models were
explored, including one in which IVR is explicitly included
according to the local random matrix theory (LRMT) of Leitner
and Wolynes.7 The LRMT is used to locate the energy threshold
at which IVR is predicted to become very rapid, and to calculate
IVR time constants at higher energies. The LRMT predictions
previously made for other systems are generally in good
agreement with experimental results.8-10 For TFE the LRMT
predicts that the IVR threshold is about 10 kcal mol-1 above
the zero point energy and that IVR is extremely rapid at the
reaction threshold itself, which is nearly 60 kcal mol-1 higher
in energy.1,5 Since the IVR rates are predicted to be so fast,
they are not rate-limiting and their over-all effect is negligible.
Using the LRMT in the master equation simulations does not
fit the KKSST data set. However, an empirical non-RRKM
model was found that gives results similar to the KKSST
experimental data. This model consists of simply truncatingk(E)
at 1.5× 107 s-1. This model has no theoretical justification; it
simply fits the KKSST data set.

Master equation simulations in paper I also showed that the
chemical activation data of Marcoux and Setser6 do not constrain
the model, because free adjustment of the (unknown) energy
transfer parameters allow all of the models to produce good
fits to the chemical activation data. It was concluded in ref 5
that the available experimental data do not allow one to reach
a definite conclusion about whether slow IVR is a reasonable
explanation of the unusual pressure dependence measured by
KKSST.

In the present paper, we employ classical trajectory methods
to test the proposal by KKSST and Kiefer that energy is
sequestered in the torsional mode. When the torsion in TFE
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contains energy below the torsional barrier, the harmonic
oscillator approximation is reasonably accurate, but the large
amplitude hindered rotation that takes place at higher energies
is extremely anharmonic. Thus, we turn to classical trajectories,
which allow for simulation with an anharmonic potential energy
surface of full dimensionality. At low energies, classical
mechanics cannot reproduce quantum effects like conservation
of zero point energy and interference,11 but these effects are of
less importance at energies as high as the reaction threshold
for HF elimination in TFE. In TFE, the reaction critical energy
(defined as the zero point energy difference between transition
state and reactant) is about 70 kcal mol-1. Since the zero point
energies of TFE and the transition state are about 36 and 31
kcal mol-1, respectively,1 the classical reaction threshold is about
75 kcal mol-1 above the bottom of the potential energy well.

HF elimination from TFE has been studied previously using
classical trajectory methods.12,13Benito and Santamarı´a12,13used
the transition state structure as a starting point and then used
classical trajectories to investigate the product energy distribu-
tions. With several different empirical potential energy surfaces,
these authors found that the distribution of vibrational energy
in the HF product was nonstatistical. The authors did not
investigate IVR within TFE, however, which is the focus of
the present work.

Classical trajectory methods are useful for studying IVR since
these methods integrate the classical equations of motion, thus
allowing the time evolution of a system to be simulated. Despite
uncertainties in the accuracy of the potential energy surfaces,
these methods have helped further understanding of IVR and
energy transfer. Consider, for example, a series of studies in
which classical trajectory methods were used to study a system
quite similar to the one considered here: the unimolecular
dissociation of 1,2-difluoroethane (DFE).14-18 These studies
established that C-C bond fission and C-H bond fission in
DFE are nonstatistical, but HF elimination from DFE is
statistical. On the basis of the calculations, three conditions were
identified14,18 as determining whether a reaction is nonstatisti-
cal: (1) the internal energy is close to the dissociation threshold,
(2) motion along the reaction coordinate does not produce large
energetic changes in one or more bonds in the remainder of the
molecule, and (3) there exists a formation coordinate for the
activated reactant that is strongly coupled to the dissociation
coordinate but only weakly coupled to the other internal
coordinates of the molecule. Later work on DFE relied on using
power spectra to demonstrate the validity of these guidelines.14

This later study also established qualitative guidelines for using
power spectra to judge the statistical/nonstatistical nature of
chemical reactions. We highlight the work on DFE because it
provides a template for studying the statistical nature of chemical
reactions, and also because of the similarity of DFE to TFE.

In this work we use two empirical potential energy functions
and the molecular dynamics program VENUS9619 (VENUS)
to investigate IVR within TFE. The two potential energy
functions are parametrized to reproduce the equilibrium geom-
etry and normal-mode frequencies for TFE. These empirical
potential energy functions do not include the HF elimination
reaction channel. Our objective is simply to study IVR involving
the torsional mode and to discuss the non-RRKM model
proposed by KKSST and Kiefer in light of our findings.

The principal result of this study is that for energies near the
reaction threshold, the time constants for energy to leave the
torsion are at least 1000 times shorter than the 10 ns estimate
of KKSST.1 Although our results cannot prove that the non-
RRKM effects described by KKSST and Kiefer are unimportant

in the TFE reaction, they strongly suggest that IVR involving
the torsion is not rate-limiting at energies near the reaction
threshold.

II. Theoretical Methods

The VENUS program has been described in detail else-
where.19 Briefly, the program integrates Hamilton’s equations
of motion based on a user-supplied potential energy function.
The potential energy is first formulated in curvilinear internal
coordinates and then transformed to Cartesian coordinates.20

This procedure ensures that the accuracy of the Hamiltonian
depends only on the potential energy, since no terms are
neglected in the kinetic energy expression.20

Potential Energy Functions.The multidimensional potential
energy surface for TFE is expressed in VENUS by using a
potential energy function (PEF). The two potential energy
functions used to describe TFE in the present work are based
on the following equation:

In eq 1 the first three terms indicate that bond stretches are
modeled using Morse oscillators, the next four terms indicate
that bond bending is modeled using the harmonic approximation,
the eighth term accounts for the potential energy associated with
the dihedral angles, and the last three terms describe nondiagonal
sretch-stretch, stretch-bend, and bend-bend interactions,
respectively. Two lettered subscripts denote bonds, and three
letter subscripts denote bond angles. For bond angles, the middle
index denotes the central atom of the angle. In eq 1 theDij

terms are the bond dissociation energies;âij are the Morse
exponential terms;rij are the bond lengths;θijk are the bond
angles;kd

n is the contribution of the potential barrier to internal
rotation that depends on dihedral angleτi with periodicityn; γn
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are the phase angles that also depend on the periodicity. The
superscript 0 in eq 1 refers to the value of the term at the
minimum energy equilibrium geometry. The nondiagonal force
constants in eq 1 are defined as

where the switching functions in all cases are defined as

In eq 5,C is the attenuation constant and serves to attenuate
the potential energy of an interaction based on the distance two
bonded atoms are from their equilibrium distance.

In this study, the “full” PEF used all terms in eq 1 and the
“simple” PEF neglected the three nondiagonal interactions in
eq 1. The adjustable parameters in eq 1 were determined using
the Levenberg-Marquardt nonlinear least squares algorithm21

to minimize differences between the vibrational frequencies
calculated with the full PEF and those calculated22 using
quantum chemical methods (the B3LYP/cc-pVTZ level of
theory). The simple PEF was not reparametrized but used the
same optimized parameters as the full PEF. See Table 1 for a
complete list of the parameters for the full PEF. In Table 2, we
compare the experimental vibrational frequencies23 to those
calculated22 at the B3LYP/cc-pVTZ level of theory and those
computed using the two PEFs. For both PEFs the bond lengths
agree with those calculated at the B3LYP/cc-pVTZ level of
theory to within(0.001 Å and the bond angles agree to within
(0.002°. The vibrational frequencies obtained using the full
PEF are in excellent agreement with the quantum chemical
calculations, whereas those obtained using the simple PEF are
still in very good agreement.

We use two PEFs in this work because the nondiagonal
interactions in the full PEF result in C-H bond fission at an
unrealistically low energy (60 kcal mol-1). This energy is lower
than needed for our investigation of IVR. Therefore, we use
the simple PEF, which omits the explicit nondiagonal interac-
tions introduced in the last three terms of eq 1, to investigate
energies greater than the reaction threshold. Later we will show
the results obtained with the two PEFs are similar for energies
below the reaction threshold. On the basis of this result we
expect the simple PEF will provide a reasonable description of
the interactions in TFE at energies greater than the reaction
threshold.

Initial Vibrational Energy Distributions. The microcanoni-
cal initialization procedure in VENUS assumes that all vibra-
tional degrees of freedom are separable harmonic oscillators.19

With this assumption, normal coordinate displacement vectors
and velocities are randomly selected for all the normal modes
such that the total energy in the normal modes matches a user-
supplied vibrational energy. If the energy computed with the
initial guesses for the normal coordinate displacements and
velocities does not match the desired vibrational energy to within
one tenth of a percent, the normal coordinate displacement
vectors and velocities are scaled until this convergence criterion
is met.19 We refer to this energy initialization procedure as the
standard initialization scheme.

We modified the standard initialization scheme so that the
torsional normal coordinate could be initialized with a large
amount of energy relative to the other normal modes. This was
accomplished by specifying that only a fractionZ of the normal
coordinate displacements and velocities of each other normal
coordinate were used to compute the energy for these vibrational
degrees of freedom. The other normal coordinate displacements
and velocities were then fixed at their initial values and not
scaled to match the specified total vibrational energy; only the
normal coordinate displacements and velocities for the torsional
normal coordinate were scaled to match the total vibrational
energy. We refer to this energy initialization procedure as the
loaded initialization scheme. In all cases,Z was set to 0.375. It
should be noted that the loaded initialization scheme is quite
inefficient. Instead of generating trajectories with a specific
energy, trajectories were initialized with a large range of
energies. This fact posed no problem though since trajectories
that were initialized with the desired amount of energy were
simply extracted from the data set containing information for
all trajectories. More details on the efficiency of this energy
initialization scheme will be given in the next section.

Torsional Energy Analysis. While VENUS can calculate
the vibrational energy in each normal mode, the procedure it

TABLE 1: Potential Energy Function Parameters

parameter value

DCC
a 101.33 kcal mol-1

DCH
a 106.69 kcal mol-1

DCF
a 124.80 kcal mol-1

âCC 1.8149 Å-1

âCH 1.8911 Å-1

âCF 1.8789 Å-1

fCCH 0.6426 mdyn Å/rad2

fCCF 2.1058 mdyn Å/rad2

fHCH 0.3468 mdyn Å/rad2

fFCF 0.7837 mdyn Å/rad2

f(CF-CC)
0 1.1610 mdyn/Å

g(CF-FCF)
0 0.3447 mdyn/rad

h(CCF-FCF)
0 -0.4057 mdyn Å/rad2

kd
1 0.0 kcal mol-1

kd
2 0.0 kcal mol-1

kd
3 (Note b) 0.3611 kcal mol-1

γn (Note c) 0.0 degrees
rCC

0 1.5018 Å
rCH

0 1.0875 Å
rCF

0 1.3499 Å
θCCH

0 109.334°
θCCF

0 111.809°
θHCH

0 109.608°
θCFC

0 107.035°
all C 1.0 Å-1

a Values from ref 36.b kd
3 is the barrier to internal rotation (3.25

kcal mol-1) divided by nine (the number of dihedral angles.)c For all
n.
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S(ri) ) exp[ - C(ri - ri
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TABLE 2: Vibrational Frequencies

experimental23,a
B3LYP/

cc-pVTZ22,b
full

PEFb
simple
PEFb

220 (A2)c torsion 226 237 237
364 (E) CF3 rocking 362 361 361
541 (E) CF3 asym def 537 533 533
603 (A1) CF3 sym def 597 592 517
831 (A1) CC str 829 815 722
969 (E) CH3 rocking 969 963 963
1224 (E) CF3 asym str 1224 1222 1222
1281 (A1) CF3 sym str 1280 1265 1264
1407 (A1) CH3 sym def. 1431 1447 1506
1457 (E) CH3 asym def. 1485 1497 1496
2975 (A1) CH3 sym str 3067 3034 3034
3034 (E) CH3 asym str 3148 3159 3159

a Fundamental vibrational frequencies (cm-1). b Harmonic vibrational
frequencies (cm-1). c Symmetry species in theC3V point group.
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uses is not valid for a molecule rotating in space. This is because
the instantaneous energies in the normal modes are obtained
from instantaneous atomic displacements from a space-fixed
reference geometry. If during the simulation the instantaneous
geometry rotates away from the space-fixed reference geometry,
the atomic displacements and consequently the normal mode
energies will not be correct. If instead the space-fixed reference
geometry was transformed to the Eckart rotating frame, normal
mode energies could be calculated for the case of a rotating
molecule, but this feature is not available in VENUS96 (and is
cumbersome to implement).

In their study of collisional energy transfer involving the
torsion in ethane, Linhananta and Lim calculated the angular
momentum for each methyl rotor separately and then subtracted
the two angular momenta to obtain the energy in the torsion.24

We have adopted a method that is in principle equivalent, but
explicitly uses the FCCH dihedral angles. It is important to note
that, for finite internal energy, the “normal” modes are not
separable, and therefore, both methods of determining the
“torsion” internal energy are affected by other modes.

The torsional energy is calculated using

whereEk is the kinetic energy of the rotor,IR is the reduced
moment of inertia of TFE, andω is the angular velocity. The
reduced moment of inertia is given by

whereICH3 andICF3 are respectively, the moments of inertia of
the CH3 and CF3 groups. The moments of inertia for the groups
are calculated using

wheremi andri are respectively, the masses of the hydrogen or
fluorine, and the distance each hydrogen or fluorine atom is
from the symmetry axis (the C-C bond). The angular velocity,
ω is calculated using

whereτ is the dihedral angle andt is time. In the simulations
∆τ is the difference in the dihedral angle between two
consecutive integration cycles.∆τ is calculated by summing
the signed changes in each of the nine FCCH dihedral angles
and dividing this quantity by nine to obtain an average change
in dihedral angle. The average angular velocity is then calculated
by dividing by the time between integration cycles (0.0007 ps),
and this quantity is then used in eq 6. The total energy in the
rotor is calculated by averaging the potential and kinetic energies
from consecutive integration cycles and adding the resulting
averaged values.

Since the interpretation of our results depends on the accuracy
of the methodology used to calculate the torsional energy, we
use two limiting cases to test the method. In one case, we used
the loaded initialization scheme to place the total energy in the
torsion. In the other case, we used a variant of the loaded
initialization scheme and distributed the energy microcanonically
in all vibrational degrees of freedom except the torsion. At the

beginning of a trajectory initialized with the vibrational energy
placed in the torsion, the torsional energy calculated using our
scheme matches the total molecular energy VENUS calculates
to within 0.2% for energies from 5 to 120 kcal mol-1. When
no vibrational energy is placed in the torsional normal mode
but energies from 5 to 120 kcal mol-1 are placed in the other
modes, our scheme calculates a torsional energy of less than
0.3% of the total molecular energy (note that there should be
no energy in the torsion for this case). The energy in the torsion
is nonzero because the normal modes are not separable. The
superposition of the normal coordinate displacement vectors and
velocities from the other normal modes contributes to the angular
velocity and, hence, to the calculated torsion energy.

Power Spectral Analysis.Power spectra have been used
extensively to study IVR within molecules.14,18,25-28 We com-
pute the power spectrum using

wheret is time,ν is the frequency at which the power spectrum
is to be evaluated,T is the total time duration of a simulation,
andq(t) denotes one of the internal coordinates of TFE. As noted
previously by other researchers,14 using q(t) in the cosine
transform results in a power spectrum that emphasizes the onset
of transitions between prominent spectral features.

In this work the angular velocities of the nine FCCH dihedral
angles areq(t). Using a protocol similar to that used by Chang
et al.,14 we calculate the power spectrum for a set of reduced
internal coordinatesqr(t) defined as

whereqmax is the maximum value of the internal coordinate
that is observed during a trajectory. Theqr(t) are therefore
dimensionless and have values between+1 and-1. For a single
trajectory, all nineqr(t) are calculated and used to generate nine
power spectra. The power spectra are then added to give a
composite power spectrum. We always report the com-
posite power spectrum. Each power spectrum was obtained
by evaluating eq 10 numerically using a frequency step size of
1.0 cm-1.

III. Results and Discussion

Unless stated otherwise all results that follow are ensemble
averages for at least 500 trajectories. All trajectories used an
integration step size of 0.1 fs. Energy conservation for the
longest trajectories considered here (1 ns) was tested by
averaging the difference between the initial and final total
energies for 10 trajectories of 1 ns duration. The average
differences were about 0.385 kcal mol-1 for trajectories at 100
kcal mol-1 total vibrational energy and 0.00483 kcal mol-1 for
trajectories with 30 kcal mol-1 of total vibrational energy. The
rotational temperature in all simulations was 0.1 K; calculations
(not reported here) with 100 kcal mol-1 total vibrational energy
and rotational temperatures of 0.1, 300, and 2000 K (where the
total energy increased from 100 to 106 kcal mol-1) gave power
spectra and torsional energy distributions that are the same,
within the statistical uncertainties.

Standard Initialization Results. One method for probing
the torsional energy distribution is to monitor the ensemble
averaged torsional energy. In Figure 1, we show the ensemble
averaged torsional energies for various total vibrational energies.
Panels a-c depict the torsional energy distributions obtained

Ek ) 1
2
IRω2 (6)

IR )
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ICH3
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using the full PEF, and panels d-f show data obtained using
the simple PEF. In all cases, the average torsional energy
increases rapidly and then fluctuates about an energy that is
close to that predicted by the equipartition of energy. The
average torsional energies and the equipartition energies are
shown in Table 3. We note that the equipartition values do not
strictly apply to the torsional mode, since the potential energy
of the torsional mode is not a quadratic function of the
coordinates.29 We give the equipartition values only to indicate
that the energy in the torsional mode is not drastically different
from the energy predicted for TFE if it were modeled as a
collection of harmonic oscillators. It is noteworthy that the

microcanonical energy-momentum selection scheme in VENUS,
which is based on harmonic oscillators, is reasonably successful,
but not perfect, in selecting initial conditions for this highly
anharmonic mode.

It is important to observe that the average torsional energies
obtained using the two PEFs are nearly identical. This result
indicates that the nondiagonal contributions do not have much
of an impact on the average torsional energy, at least at the
total vibrational energies considered here. The important conclu-
sion to draw from the data in Figure 1a-f is that the time
dependence of the ensemble averaged torsional energies does
not indicate that anomalous amounts of energy are being
sequestered in the torsional mode for long periods of time.

While the ensemble averaged results are useful for depicting
how the system behaves on average, it is also instructive to
monitor the torsional energy for individual trajectories. In Figure
2, we show the torsional energies from single trajectories
initialized using the standard initialization scheme with total
vibrational energies of 30 and 100 kcal mol-1, respectively. The
results in Figure 2 show that a significant fraction of the total

Figure 1. Ensemble averaged torsional energies from trajectories initialized using the standard initialization scheme. Panels a-c were obtained
with the full PEF and panels d-f were obtained using the simple PEF. The data in panels a-c are for 30, 40, and 50 kcal mol-1 of total vibrational
energy, respectively. Data in panels d-f are for the same energies as panels a-c.

TABLE 3: Average Torsional and Equipartition Energiesa

total vibrational
energya

full PEF
Etorsion

simple PEF
Etorsion

equipartition
energy

30 1.83 1.83 1.67
40 2.27 2.31 2.22
50 2.68 2.67 2.78

a kcal mol-1

Intramolecular Vibrational Energy Redistribution J. Phys. Chem. A, Vol. 110, No. 21, 20066855



available vibrational energy rapidly flows in to and out of the
torsion. If energy were isolated in the torsion, one would expect
much smaller energy fluctuations than are observed in Figure
2.

Loaded Initialization Results. To test the conceptual model
proposed by KKSST and Kiefer requires putting a substantial
amount of energy in the torsional mode and monitoring the time
it takes for the energy to redistribute to the remaining vibrational
degrees of freedom. This was accomplished by using the loaded
initialization scheme. Since using the full PEF sometimes
resulted in trajectories that dissociated at relatively low energies,
as noted earlier, we determined time constants for energy
relaxation from the torsional mode using the simple PEF. In
Figure 3 we show the ensemble averaged torsional energies for
simulations in which 25%( 10% and 45%( 10% of the total
vibrational energy (80, 100, and 120 kcal mol-1) is placed in
the torsional normal mode. As noted earlier the loaded energy
initialization scheme is inefficient. Out of a total of 2000
trajectories with fractionZ ) 0.375, only about 525 were
initialized with 25%( 10% and about 325 of the 2000 were
initialized with 45%( 10%. Therefore, the results in Figure
3a are the ensemble averaged results obtained using about 525
trajectories, and the results in Figure 3b are the ensemble
averaged results obtained using about 325 trajectories.

The decay of the ensemble averaged torsional energies in
Figure 3 is well described by a single-exponential function:

whereE(t) in eq 12 is the energy in the torsional mode which
depends on the time (t), c1 andc3 are fitted parameters, andτtor

is a time constant describing energy flow out of the torsional
mode, i.e., an IVR time constant. In general IVR exhibits
multiple time scales and the time scales themselves depend on

the way in which the molecule is excited. Here we are only
concerned with energy flow out of the torsional mode and
consequently in what follows reference to the IVR time constant
always refers toτtor. See Table 4 for the IVR time constants
extracted from the data in Figure 3.

As expected, the IVR time constants in Table 4 show a clear
dependence on the amount of energy initially residing in the
torsional mode. The greater the energy that is initially placed
in the torsional mode the longer the IVR time constant. In all
cases the IVR time constants are less than 10 ps, which is 3
orders of magnitude faster than the time constant estimated by
KKSST.1 In the limit that all of the vibrational energy is placed
in the torsional mode, very long times (at least several
nanoseconds) will be needed for the energy to redistribute. It is
also noteworthy that for each case considered in Figure 3 only

Figure 2. Torsional energies from a single trajectory initialized using
the standard initialization scheme: (a) 30 kcal mol-1 of total vibrational
energy; (b) 100 kcal mol-1 of total vibrational energy. These data were
obtained using the simple PEF.

E(t) ) c1 exp(- t/τtor) + c3 (12)

Figure 3. Average torsional energies for trajectories initialized using
the loaded initialization scheme. (a) 25%( 10% of the total energy in
the torsion; (b) 45%( 10% of the total energy in the torsion. Shown
in both panels are data for total vibrational energies of 80, 100, and
120 kcal mol-1. The data in both panels were obtained using the simple
PEF. The solid lines are fits to the data using a nonlinear least squares
routine.

TABLE 4: IVR Time Constants

time constants (ps)

Evib (total vibrational
energy, kcal mol-1)

Etorsion/Evib )
0.25( 0.10

Etorsion/Evib )
0.45( 0.10

80 5.2 8.0
100 3.0 4.8
120 2.1 3.0
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50 ps are needed for the average torsional energy to become
equal to the ensemble averaged torsional energy obtained for
500 trajectories of 1 ns duration. This result indicates that there
is not a slow component to the relaxation.

The trend observed in Figure 3 seems to contradict the results
in Figure 1, where the time constant becomes shorter as the
total vibrational energy is increased. However, both can be
understood if the rate of IVR is controlled largely by the amount
of energy in theothermodes. As the other modes become more
excited, the asymmetric methyl deformations become more
extreme, resulting in breaking the high symmetry of the
equilibrium structure. This creates more resistance to internal
rotation and provides a coupling mechanism that enhances the
IVR rate. This is an argument first presented in ref 5.

Power Spectra Results.All power spectra were obtained
for single trajectories of 50 ps duration. Power spectra for
multiple trajectories were investigated, and it was found that

all of the spectra are qualitatively similar. The intensities of all
peaks are normalized relative to the most intense peak at a
frequency greater than 10 cm-1. This choice was made because
there was often a large intensity at very low frequency.

In Figure 4, we show power spectra at vibrational energies
of 0.005, 30 (approximately the zero point energy (ZPE)), and
100 kcal mol-1 (approximately the ZPE plus the reaction
threshold energy), for trajectories initialized using the standard
initialization procedure. As expected,27 Figure 4a shows that,
at low energy, the spectral transitions are sharp and match the
normal-mode frequencies exactly.

In general, as the total vibrational energy is increased the
spectral features broaden and undergo red-shifting. With the
exception of the CF3 rocking and the torsion modes, the
transitions in panel c are red shifted by about 100 cm-1 in
comparison to the normal-mode frequencies. The red-shifting

Figure 4. Power spectra at various total vibrational energies for
trajectories initialized using the standard initialization scheme. The data
in all panels was obtained using the simple PEF.

Figure 5. Power spectra at various total vibrational energies for
trajectories initialized using the loaded initialization scheme. These data
are for a single trajectory in which 28% of the total vibrational energy
was initially placed in the torsional mode. The data in all panels was
obtained using the simple PEF.
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and broadening are the result of intermode coupling. The
intermode coulpling occurs via the kinetic energy couplings in
the Hamiltonian. A striking feature of these spectra is that the
torsional mode is not isolated from the other vibrational modes.
This is evident in Figure 4, parts b and c, where the transition
at the torsional frequency of 237 cm-1 broadens and appears to
become less intense. The high-frequency CH stretch transitions
near 3000 cm-1 also broaden and undergo red-shifting as the
total vibrational energy increases, apparently due to coupling
with other modes. Note that red-shifting results in better
frequency matching with the overtones of some of the mid-
frequency transitions. This can result in enhanced IVR rates.30

In Figure 5, are shown power spectra for trajectories
initialized using the loaded initialization scheme. These power
spectra were obtained at total vibrational energies of 100, 120,
and 140 kcal mol-1 with approximately 28% of the total
vibrational energy initially in the torsional mode. As the total
vibrational energy increases, broadening of all transitions is very
clear. Again, the torsional mode transition is smeared out and
indistinct, indicating that the torsional mode is coupled to other
modes. As was the case in Figure 4, with the exception of the
CF3 rocking transition and the torsion, the transitions in all
spectra are red-shifted from the normal-mode frequencies by
about 100 cm-1. In the spectral window between 350 and 1500
cm-1, which contains nine of the 12 harmonic frequencies, we
see a significant broadening as the vibrational energy is
increased. At 140 kcal mol-1 of vibrational energy the spectral
identity of specific transitions has become difficult to assign.
There is also an increase in the number and intensity of
transitions between about 1600 and 2800 cm-1as the vibrational
energy is increased. Overall the spectra show that the vibrational
modes are strongly coupled and that the coupling increases as
the total vibrational energy increases. Although these spectra
do not exhibit the “grassiness” that has been attributed to
statistical systems, none of the transitions is completely
isolated.14 This result suggests that TFE should be well described
by statistical theories like RRKM theory.

IV. Conclusions and Implications for the KKSST
non-RRKM Model

Using two empirical PEFs and classical trajectory calculations
we have studied IVR in TFE. In contrast to KKSST1 and
Kiefer’s non-RRKM model, which assumes that IVR takes place
on a time scale of∼10 ns, we find that the time constant for
energy to leave the torsion proceeds about 1000 times as fasts
typically <10 ps at energies greater than the classical reaction
threshold energy. Furthermore, the rate of decay depends largely
on the amount of energy in the other vibrational energy modes.
This is explained if the methyl deformations interfere with the
internal rotation and thus provide a mechanism for enhanced
IVR.5 Power spectra obtained for a range of energies provide
evidence that coupling between the vibrational modes is
substantial and increases as the total vibrational energy in the
molecule increases. In all cases we find that IVR involving the
torsion is fast and that the torsion is not isolated from the other
vibrational modes.

One must exercise some caution, when interpreting these
results. The accuracy of the results depends primarily on how
accurately the PEF describes the “real” TFE molecule. We have
chosen to use simple, conventional PEFs that are parametrized
to reproduce only the equilibrium geometry and vibrational
frequencies of TFE. There is no guarantee that these PEFs are
accurate for geometries far from equilibrium. Additionally,
previous researchers have shown that IVR can be very sensitive

to details of the PEF.20 However, the simple PEF minimizes
off-diagonal interactions and therefore probably has less internal
coupling than the true PEF. If this is the case, then the calculated
IVR time constants are probably upper limits to the correct
values.

It is informative to review and discuss the model proposed
by KKSST1 and Kiefer37 to explain the unusual pressure
dependence of the TFE data. Their model is summarized in ref
5. They envision rapid collisional energy transfer mostly to the
torsional mode, which remains only weakly coupled to the other
modes at high energies due to its high symmetry. Furthermore,
when the torsion is excited, the distortion of the CH3 and CF3
rotors needed to achieve the geometry of the transition state
introduces>20 kcal mol-1 increase in the energy requirement
for reaction. This conclusion is based on a calculation carried
out by L. Harding in which the two distorted rotors were
“frozen” in the transition state geometry and then forced to rotate
around the C-C axis.38 This added energy effectively raises
the critical energy for reaction when the torsion is excited,
resulting in the non-RRKM effect. Thus, according to this
proposed model, excitation of the isolated torsion both sequesters
energy, making it unavailable for reaction, and increases the
reaction critical energy, further slowing the reaction.

The validity of KKSST and Kiefer’s non-RRKM model rests
on the assumptions that energy is selectively transferred to the
torsion and then becomes isolated in the torsional mode. Below
the torsion barrier, the torsional states are nearly equally spaced
and collisional activation from one torsion quantum state to the
next will proceed with roughly the same rate constant, scaled
by the vibrational quantum number, like a harmonic oscillator.31

Above the barrier, however, the torsional states become more
like free internal rotations where the energy difference between
states become larger as the total energy is increased. At a
torsional energy of∼20 kcal mol-1 above the zero level, for
example, the hindered rotor states in TFE are about 400 cm-1

apart. As the energy differences between states increase,
collisional excitation from one state to the next will become
slower, due to the Boltzmann factor. Thus, there is an internal
limitation in the rate of ladder climbing up the pure torsional
states. In explaining ultrasound attenuation data, Lambert and
Salter32 showed that when the energy difference between states
becomes large enough, further ladder climbing does not take
place by pure torsional excitations, but via excitation of
combinations of modes, where the energy differences between
states are smaller.

Energy transfer in molecules that contain an internal rotor
has also been studied computationally. For example, classical
trajectory calculations on ethane24 indicate that the torsion acts
largely like a free rotor at moderate energies above the torsion
barrier. Because it is coupled both to the over-all molecular
rotations and to the molecular vibrations, the torsion acts as an
efficient “gateway” to collisional energy transfer, which is
mediated by rotations.24 Thus, the torsion in ethane is not
isolated, despite its high symmetry. Similar trajectory calcula-
tions on larger molecules have also shown that the torsion plays
a significant role in collisional energy transfer.33,34

In addition to the experimental and computational energy
transfer studies just cited, the local random matrix theory7

(LRMT) of Leitner and Wolynes is designed to make predictions
about IVR. LRMT is used to locate an IVR threshold, that is,
it predicts an energy beyond which IVR will be fast. The LRMT
has been applied to predict the IVR energy threshold and energy
flow rates above the IVR threshold for dozens of modest-sized
organic molecules, generally comparing well with experimental
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results.8-10 The LRMT IVR threshold and rates do not directly
depend on the total density of states of the molecule, but on a
local density of resonantly coupled states.7,35For TFE the LRMT
predicts that the IVR threshold is about 10 kcal mol-1 above
its zero point energysan energy nearly 60 kcal mol-1 below
the reaction threshold.5

In contrast with the LRMT, the present trajectory calculations
do not show a distinct threshold for onset of IVR. To a large
extent this may be due to the failure of classical mechanics to
conserve zero point energy and its inability to capture the
intrinsic quantum nature of IVR, as discussed in the context of
the LRMT (which is a quantum mechanical model).7,35 Thus,
the present classical mechanical simulations cannot capture the
details of IVR, although they can give semiquantitative insights.
They agree with the LRMT in that IVR is expected to be rapid
even at energies well below the reaction threshold. This is true
even for the simple PEF, which minimizes coupling.

From these results, we conclude that even if collisional
excitation of the torsional states is highly selective, the torsion
is strongly coupled to the other vibrational modes and therefore
energy randomization will be essentially complete before the
next collision occurs. Thus, energy will not be selectively
sequestered by the torsional mode, and another explanation must
be found for the unusual pressure dependent data reported by
KKSST.
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